5-Aminolaevulinic acid dehydratase: metals, mutants and mechanism.
نویسندگان
چکیده
5-Aminolaevulinic acid dehydratase catalyses the formation of porphobilinogen from two molecules of 5-aminolaevulinic acid. The studies described highlight the importance of a bivalent metal ion and two active-site lysine residues for the functioning of 5-aminolaevulinic acid dehydratase. Dehydratases fall into two main categories: zinc-dependent enzymes and magnesium-dependent enzymes. Mutations that introduced zinc-binding ligands into a magnesium-dependent enzyme conferred an absolute requirement for zinc. Mutagenesis of lysine residues 247 and 195 in the Escherichia coli enzyme lead to dramatic effects on enzyme activity, with lysine 247 being absolutely essential. Mutation of either lysine 247 or 195 to cysteine, and treatment of the mutant enzyme with 2-bromethylamine, resulted in the recovery of substantial enzyme activity. The effects of the site-directed alkylating inhibitor, 5-chlorolaevulinic acid, and 4,7-dioxosebacic acid, a putative intermediate analogue, were investigated by X-ray crystallography. These inhibitors reacted with both active-site lysine residues. The role of these two lysine residues in the enzyme mechanism is discussed.
منابع مشابه
Structure of yeast 5-aminolaevulinic acid dehydratase complexed with the inhibitor 5-hydroxylaevulinic acid.
The X-ray structure of the enzyme 5-aminolaevulinic acid dehydratase (ALAD) from yeast complexed with the competitive inhibitor 5-hydroxylaevulinic acid has been determined at a resolution of 1.9 A. The structure shows that the inhibitor is bound by a Schiff-base link to one of the invariant active-site lysine residues (Lys263). The inhibitor appears to bind in two well defined conformations an...
متن کاملThe X-ray structure of yeast 5-aminolaevulinic acid dehydratase complexed with two diacid inhibitors.
The structures of 5-aminolaevulinic acid dehydratase complexed with two irreversible inhibitors (4-oxosebacic acid and 4,7-dioxosebacic acid) have been solved at high resolution. Both inhibitors bind by forming a Schiff base link with Lys 263 at the active site. Previous inhibitor binding studies have defined the interactions made by only one of the two substrate moieties (P-side substrate) whi...
متن کاملX-ray structure of a putative reaction intermediate of 5-aminolaevulinic acid dehydratase.
The X-ray structure of yeast 5-aminolaevulinic acid dehydratase, in which the catalytic site of the enzyme is complexed with a putative cyclic intermediate composed of both substrate moieties, has been solved at 0.16 nm (1.6 A) resolution. The cyclic intermediate is bound covalently to Lys(263) with the amino group of the aminomethyl side chain ligated to the active-site zinc ion in a position ...
متن کاملIdentification of lysine at the active site of human 5-aminolaevulinate dehydratase.
Reduction of human 5-aminolaevulinate dehydratase with NaBH4 in the presence of 14C-labelled substrate led to complete loss of catalytic activity and to incorporation of label into the enzyme protein. By comparison with authentic lysyl-aminolaevulinic acid, prepared chemically, the modified active-site amino acid obtained by acid hydrolysis was shown to be lysine. Sequencing of a CNBr-cleavage ...
متن کاملStructure of Chlorobium vibrioforme 5-aminolaevulinic acid dehydratase complexed with a diacid inhibitor.
The structure of Chlorobium vibrioforme 5-aminolaevulinic acid dehydratase (ALAD) complexed with the irreversible inhibitor 4,7-dioxosebacic acid has been solved. The inhibitor binds by forming Schiff-base linkages with lysines 200 and 253 at the active site. The structure reported here provides a definition of the interactions made by both of the substrate molecules (A-side and P-side substrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2002